Increasing the Size-Selectivity in Laser-Based g/h Liquid Flow Synthesis of Pt and PtPd Nanoparticles for CO and NO Oxidation in Industrial Automotive Exhaust Gas Treatment Benchmarking

2020 
PtPd catalysts are state-of-the-art for automotive diesel exhaust gas treatment. Although wet-chemical preparation of PtPd nanoparticles below 3 nm and kg-scale synthesis of supported PtPd/Al2O3 are already established, the partial segregation of the bimetallic nanoparticles remains an issue that adversely affects catalytic performance. As a promising alternative, laser-based catalyst preparation allows the continuous synthesis of surfactant-free, solid-solution alloy nanoparticles at the g/h-scale. However, the required productivity of the catalytically relevant size fraction 1 g/h is presented via an in-process size tuning strategy. After the laser-based preparation of hectoliters of colloid and more than 2 kg of PtPd/Al2O3 wash coat, the laser-generated catalysts were benchmarked against an industry-relevant reference catalyst. The conversion of CO by laser-generated catalysts was found to be equivalent to the reference, while improved activity during NO oxidation was achieved. Finally, the present study validates that laser-generated catalysts meet the size and productivity requirements for industrial standard operating procedures. Hence, laser-based catalyst synthesis appears to be a promising alternative to chemical-based preparation of alloy nanoparticles for developing industrial catalysts, such as those needed in the treatment of exhaust gases.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    8
    Citations
    NaN
    KQI
    []