Detecting the Diffuse Supernova Neutrino Background in the future Water-based Liquid Scintillator Detector Theia.

2020 
A large-scale neutrino observatory based on Water-based Liquid Scintillator (WbLS) will be excellently suited for a measurement of the Diffuse Supernova Neutrino Background (DSNB). The WbLS technique offers high signal efficiency and effective suppression of the otherwise overwhelming background from neutral-current interactions of atmospheric neutrinos. To illustrate this, we investigate the DSNB sensitivity for two configurations of the future Theia detector by developing the expected signal and background rejection efficiencies along a full analysis chain. Based on a statistical analysis of the remaining signal and background rates, we find that a rather moderate exposure of 150 kt$\cdot$yrs will be sufficient to claim a ($5\sigma$) discovery of the faint DSNB signal for standard model assumptions. We conclude that, in comparison with other experimental techniques, WbLS offers the highest signal efficiency of more than 80% and best signal significance over background.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    6
    Citations
    NaN
    KQI
    []