Improved Sterile Neutrino Constraints from the STEREO Experiment with 179 Days of Reactor-On Data

2019 
The STEREO experiment is a very short baseline reactor antineutrino experiment. It is designed to test the hypothesis of light sterile neutrinos being the cause of a deficit of the observed antineutrino interaction rate at short baselines with respect to the predicted rate, known as the Reactor Antineutrino Anomaly. The STEREO experiment measures the antineutrino energy spectrum in six identical detector cells covering baselines between 9 and 11 m from the compact core of the ILL research reactor. In this article, results from 179 days of reactor turned on and 235 days of reactor turned off are reported in unprecedented detail. The current results include improvements in the description of the optical model of the detector, the gamma-cascade after neutron captures by gadolinium, the treatment of backgrounds, and the statistical method of the oscillation analysis. Using a direct comparison between antineutrino interaction rates of all cells, independent of any flux prediction, we find the data compatible with the null oscillation hypothesis. The best-fit point of the Reactor Antineutrino Anomaly is rejected at more than 99.9% C.L.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    43
    Citations
    NaN
    KQI
    []