Improving CO2/CH4 separation efficiency of Pebax-1657 membrane by adding Al2O3 nanoparticles in its matrix

2019 
Abstract In this study, polymeric nanocomposite gas separation membranes were fabricated by incorporating different contents of aluminum oxide (Al2O3) (0, 2, 4, 6 and 8 wt. %) into the matrix of poly (ether-block-amide) (Pebax). The resultant membranes properties were characterized by using FTIR, FESEM, XRD, and TGA. Permeation rates of pure CO2 and CH4 gases through the fabricated pristine and the nanoparticles-incorporated membranes were measured at different pressures (3, 6, 9, 12 and 15 bar) and a fixed temperature of 25 °C. The results revealed better separation efficiency (CO2 permeability and CO2/CH4 selectivity) of the nanocomposite membranes than the pristine membrane. For example, the CO2 permeability and ideal CO2/CH4 selectivity values for the neat membrane at the pressure of 3 bar were 123.46 Barrer and 21.21, respectively while those values for the membrane comprising 8 wt. % of Al2O3 were 159.27 Barrer and 24.73.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    10
    Citations
    NaN
    KQI
    []