AZD4547 Attenuates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting Inflammation: The Role of FGFR1 in Renal Tubular Epithelial Cells

2020 
Introduction: Inflammation plays an important role in the pathogenesis of acute kidney injury (AKI). Fibroblast growth factor receptor 1 (FGFR1) signaling is implicated in kidney pathology. AZD4547 is a small molecule inhibitor of FGFR1. Materials and Methods: Here, we investigated whether AZD4547 could mitigate inflammatory responses in AKI. C57BL/6 mice were injected with lipopolysaccharide (LPS) to induce AKI. FGFR1 was blocked using AZD4547 or CRISPR/Cas9 genome editing. After immunofluorescent double-staining of kidney tissues showing that P-FGFR1 was localized to renal tubular epithelial cells, a tubular epithelial cell line (NRK-52E) was used for in vitro analysis. Results: AZD4547 significantly reduced renal inflammation, cell apoptosis, and kidney dysfunction in AKI mice. In vitro, treatment of NRK-52E cells with AZD4547 attenuated LPS-induced inflammatory responses and was associated with downregulated P-FGFR1 levels. These findings were further confirmed in NRK-52E cells by knocking down the expression of FGFR1. Conclusion: Our findings provide direct evidence that FGFR1 mediates LPS-induced inflammation leading to renal dysfunction. We also show that AZD4547 is a potential therapeutic agent to reduce inflammatory responses in AKI. Both FGFR1 and AZD4547 may interesting therapeutic options to combat AKI.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    2
    Citations
    NaN
    KQI
    []