Octet baryon magnetic moments from lattice QCD: Approaching experiment from a three-flavor symmetric point

2017 
Lattice QCD calculations with background magnetic fields are used to determine the magnetic moments of the octet baryons. Computations are performed at the physical value of the strange quark mass, and two values of the light quark mass, one corresponding to the SU(3) flavor-symmetric point, where the pion mass is ~ 800 MeV, and the other corresponding to a pion mass ~ 450 MeV. The moments are found to exhibit only mild pion-mass dependence when expressed in terms of appropriately chosen magneton units---the natural baryon magneton. This suggests that simple extrapolations can be used to determine magnetic moments at the physical point, and extrapolated results are found to agree with experiment within uncertainties. A curious pattern is revealed among the anomalous baryon magnetic moments which is linked to the constituent quark model, however, careful scrutiny exposes additional features. Relations expected to hold in the large-Nc limit of QCD are studied; and, in one case, the quark model prediction is significantly closer to the extracted values than the large-Nc prediction. The magnetically coupled Lambda-Sigma system is treated in detail at the SU(3) point, with the lattice QCD results comparing favorably with predictions based on SU(3) symmetry. This analysis enables the first extraction of the isovector transition magnetic polarizability. The possibility that large magnetic fields stabilize strange matter is explored, but such a scenario is found to be unlikely.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    82
    References
    27
    Citations
    NaN
    KQI
    []