Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways

2020 
The shared role of amyloid-β (Aβ) deposition in cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD) is arguably the clearest instance of crosstalk between neurodegenerative and cerebrovascular processes. The pathogenic pathways of CAA and AD intersect at the levels of Aβ generation, its circulation within the interstitial fluid and perivascular drainage pathways and its brain clearance, but diverge in their mechanisms of brain injury and disease presentation. Here, we review the evidence for and the pathogenic implications of interactions between CAA and AD. Both pathologies seem to be driven by impaired Aβ clearance, creating conditions for a self-reinforcing cycle of increased vascular Aβ, reduced perivascular clearance and further CAA and AD progression. Despite the close relationship between vascular and plaque Aβ deposition, several factors favour one or the other, such as the carboxy-terminal site of the peptide and specific co-deposited proteins. Amyloid-related imaging abnormalities that have been seen in trials of anti-Aβ immunotherapy are another probable intersection between CAA and AD, representing overload of perivascular clearance pathways and the effects of removing Aβ from CAA-positive vessels. The intersections between CAA and AD point to a crucial role for improving vascular function in the treatment of both diseases and indicate the next steps necessary for identifying therapies. Amyloid-β deposition underlies the pathogenesis of cerebral amyloid angiopathy (CAA) and Alzheimer disease (AD), but the disease pathways differ. Here, Greenberg et al. consider the interactions between CAA and AD, the factors that determine which disease pathway transpires, and the implications for therapeutic development.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    234
    References
    124
    Citations
    NaN
    KQI
    []