Search for Majorana Neutrinos Near the Inverted Mass Hierarchy Region with KamLAND-Zen

2016 
Author(s): Gando, A; Gando, Y; Hachiya, T; Hayashi, A; Hayashida, S; Ikeda, H; Inoue, K; Ishidoshiro, K; Karino, Y; Koga, M; Matsuda, S; Mitsui, T; Nakamura, K; Obara, S; Oura, T; Ozaki, H; Shimizu, I; Shirahata, Y; Shirai, J; Suzuki, A; Takai, T; Tamae, K; Teraoka, Y; Ueshima, K; Watanabe, H; Kozlov, A; Takemoto, Y; Yoshida, S; Fushimi, K; Banks, TI; Berger, BE; Fujikawa, BK; O'Donnell, T; Winslow, LA; Efremenko, Y; Karwowski, HJ; Markoff, DM; Tornow, W; Detwiler, JA; Enomoto, S; Decowski, MP | Abstract: © 2016 American Physical Society. We present an improved search for neutrinoless double-beta (0νββ) decay of Xe136 in the KamLAND-Zen experiment. Owing to purification of the xenon-loaded liquid scintillator, we achieved a significant reduction of the Ag110m contaminant identified in previous searches. Combining the results from the first and second phase, we obtain a lower limit for the 0νββ decay half-life of T1/20νg1.07×1026 yr at 90% C.L., an almost sixfold improvement over previous limits. Using commonly adopted nuclear matrix element calculations, the corresponding upper limits on the effective Majorana neutrino mass are in the range 61-165 meV. For the most optimistic nuclear matrix elements, this limit reaches the bottom of the quasidegenerate neutrino mass region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    999
    Citations
    NaN
    KQI
    []