Effect of graphene material structure and iron oxides deposition method on morphology and properties of graphene/iron oxide hybrids

2022 
Abstract In this work, various facile approaches were applied to prepare hybrids of graphene nanoplatelets (GNPs) and graphene oxide (GO) with iron oxides (IO) nanoparticles (NPs). The IO NPs were synthesized and deposited on the graphene surfaces via: (1) co-precipitation using Fe (II) and Fe (III) salts, (2) homogeneous precipitation of Fe2O3 from FeCl3 solution, (3) the attaching of Fe2O3 NPs functionalized with 3-aminopropyltrimethoxysilane to graphene surfaces of GO and GNPs. The effects of the graphene material and preparation procedure on the structural characteristics of the hybrids were studied. Their morphology was studied by scanning electron microscopy and transmission microscopy. Lattice parameters and crystallite sizes of the synthesized hybrid materials were assessed by X-ray diffraction. Raman spectroscopy was used to determine the change of order degree of graphene structures as a results of IO NPs deposition and interactions IO NPs with graphene sheets. Binding energy for IO NPs and graphene structures were determined by photoelectron X-ray spectroscopy. Thermogravimetric analysis was applied to find differences in the thermal stability of hybrids. The hybrids are proposed as nanofillers to polymer composites, however they have large potential applications as supercapacitors, advanced anode materials for lithium-ion batteries, magnetically targeted drug delivery, and magnetic resonance imaging.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    0
    Citations
    NaN
    KQI
    []