Elaborating the membrane life concept in a full scale hollow-fibers MBR

2012 
Abstract The membrane life-time has a strong impact on competitivity and viability of MBRs. This study critically analyzes the membrane life-time concept, approaching it through different assessment methods. A full scale MBR's membrane life-time was assessed on the following: (i) maintaining the permeate flow throughput to the MBR; (ii) the permeability decline; (iii) oxidative aging; (iv) the increase in energy costs; and (v) mechanical aging. The method based on permeability decline provides a membrane life-time estimate up to a theoretical end. It was further elaborated inherently to operations with no long-term flux decline. The increase in operating pressure remains the main end-of-life trigger for deciding when to replace membrane modules. On the contrary, mechanical and permeate flow throughput analysis of the data are not able to provide a clear estimate of the membrane life-time. As for the membrane life-time estimation based on chlorine contact, it was found to be too optimistic. Complete irreversible fouling occurs before maximum contact time with chlorine is reached. At end-of-life operating conditions, the energy consumption raised of 170% due to the reduced flow rate. The cost raise appears high but still affordable. Earlier membrane replacement thus can never be counterbalanced by energy costs saving.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    21
    Citations
    NaN
    KQI
    []