Melatonin attenuates oxidative stress and inflammation of Müller cells in diabetic retinopathy via activating the Sirt1 pathway

2021 
Abstract Oxidative stress and inflammation are important pathogenic factors of diabetic retinopathy (DR). DR remains the most common ocular complication caused by diabetes mellitus (DM) and is the leading cause of visual impairment in working-aged people worldwide. Melatonin has attracted extensive attention due to its potent antioxidant and anti-inflammatory effects. In the present study, melatonin inhibited oxidative stress and inflammation by enhancing the expression and activity of silent information regulator factor 2-related enzyme 1 (Sirt1) both in in vitro and in vivo models of DR, and the Sirt1 inhibitor EX-527 counteracted melatonin-mediated antioxidant and anti-inflammatory effects on Muller cells. Moreover, melatonin enhanced Sirt1 activity through the maternally expressed gene 3 (MEG3)/miR-204 axis, leading to the deacetylation of the Sirt1 target genes forkhead box o1 (Foxo1) and nuclear factor kappa B (NF-κB) subunit p65, eventually contribute to the alleviation of oxidative stress and inflammation. The study revealed that melatonin promotes the Sirt1 pathway, thereby protecting the retina from DM-induced damage.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    3
    Citations
    NaN
    KQI
    []