Scaling Up Hardware Accelerator Verification using A-QED with Functional Decomposition.

2021 
Hardware accelerators (HAs) are essential building blocks for fast and energy-efficient computing systems. Accelerator Quick Error Detection (A-QED) is a recent formal technique which uses Bounded Model Checking for pre-silicon verification of HAs. A-QED checks an HA for self-consistency, i.e., whether identical inputs within a sequence of operations always produce the same output. Under modest assumptions, A-QED is both sound and complete. However, as is well-known, large design sizes significantly limit the scalability of formal verification, including A-QED. We overcome this scalability challenge through a new decomposition technique for A-QED, called A-QED with Decomposition (A-QED$^2$). A-QED$^2$ systematically decomposes an HA into smaller, functional sub-modules, called sub-accelerators, which are then verified independently using A-QED. We prove completeness of A-QED$^2$; in particular, if the full HA under verification contains a bug, then A-QED$^2$ ensures detection of that bug during A-QED verification of the corresponding sub-accelerators. Results on over 100 (buggy) versions of a wide variety of HAs with millions of logic gates demonstrate the effectiveness and practicality of A-QED$^2$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []