Immobilization of cesium from aqueous solution using nanoparticles of synthetic calcium phosphates

2018 
The particularities of cesium incorporation into synthetic calcium phosphates with either apatite or whitlockite-type structures were investigated using the sorption process from aqueous solution and further heating to 700 °C. The nanoparticles for sorption were prepared by wet precipitation from aqueous solutions at a fixed molar ratio of Ca/P = 1.67 and two different ratios of CO32−/PO43− (0 or 1). The obtained substituted calcium phosphates and corresponding samples after the sorption of cesium from solutions with different molar concentrations (c(Cs+) = 0.05, 0.1 and 0.25 mol L−1) were characterized by powder X-ray diffraction, FTIR spectroscopy, scanning electron microscopy and elemental analysis. Based on the combination of X-ray diffraction and elemental analyses data for the powders after sorption, the cesium incorporated in the apatite- or whitlockite-type structures and its amount increased with its concentration in the initial solution. For sodium-containing calcium phosphate even minor content of Cs+ in its composition significantly changed the general principle of its transformation under annealing at 700 °C with the formation of a mixture of α-Ca3(PO4)2 and cesium-containing apatite-related phase. The obtained results indicate the perspective of using of complex substituted calcium phosphates nanoparticles for immobilization of cesium in the stable whitlockite- or apatite-type crystal materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []