The mechanical and thermal responses of colliding oxide-coated aluminum nanoparticles

2017 
The aggregation and fracture of oxide-coated metal nanoparticles have a significant influence on their physical and chemical behaviors in synthesis, combustion, or detonation. How does the dynamic loading caused by the impact between nanoparticles affect them? Motivated by this issue, we carried out molecular dynamic simulations of two colliding aluminum nanoparticles to investigate their mechanical and thermal properties and response at impact velocities of 200 m/s, 600 m/s, 1000 m/s, and 2000 m/s. At the relatively low impact velocities (equal to or less than 1000 m/s), it was observed that the particles are mildly deformed and adhere to each other, but the shells do not undergo fracture under the dynamic loading. The metal core and oxide shell behave elastically at 200 m/s and elasto-plastically at 600 m/s. A concentration of dynamic volumetric stress appears but no concentration of shear stress and no formation of a hot spot. Due to the low intensity of the loading and the efficient propagation of the...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    10
    Citations
    NaN
    KQI
    []