Effect of the surface charge density of nanoparticles on their translocation across pulmonary surfactant monolayer: a molecular dynamics simulation

2018 
AbstractInteraction between nanoparticles (NPs) and pulmonary surfactant monolayer plays a very significant role in nanoparticle-based pulmonary drug delivery system. Previous researches have indicated that different properties of nanoparticles can affect their translocation across pulmonary surfactant monolayer. Here we performed coarse-grained molecular dynamics simulation aimed at nanoparticles’ surface charge density effect on their penetration behaviours. Several hydrophilic nanoparticles with different surface charge densities were modelled in the simulations. The results show that NPs’ surface charge density affects their translocation capability: the higher the surface charge densities of NPs are, the worse their translocation capability is. It will cause the structural changes of pulmonary surfactant monolayer, and inhibit the normal phase transition of the monolayer during the compression process. Besides, charged NPs can be adsorbed on the surface of the monolayer after translocation as a stabl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    8
    Citations
    NaN
    KQI
    []