New insights into effect of alkaline cleaning on fouling behavior of polyamide nanofiltration membrane for wastewater treatment

2021 
Abstract Membrane fouling is an intractable issue in wastewater treatment by nanofiltration (NF) membrane, and alkaline cleaning is the most effective approach to remove organic fouling on NF membrane. However, it was found that pore swelling of NF membrane induced by alkaline cleaning might reduce cleaning efficiency, and it is never quantified and its effect on membrane fouling behavior is still mysterious. In this work, membrane pore swelling effect (~9.7%, increment of effective pore size) induced by alkaline cleaning (pH 11) is confirmed and its effect on fouling behavior of the polyamide NF membrane is investigated based on experimental and modelling results. It is found that the alkali-induced pore swelling phenomenon would disappear after water filtration at neutral pH for 30 min, and if such cleaned membrane is faced by the small foulants during this pore shrinkage period, the concentration polarization and membrane fouling would be severer, and the subsequent alkaline cleaning is less effective because more foulants enter the enlarged pores and are tightly embedded in the membrane. Thus, the irreversible fouling of the NF membrane increases from 20% to 40% while its permeability recovery declines from 100% to 67% after six fouling/cleaning cycles. When an anionic surfactant sodium dodecyl sulfate (SDS, 10 mM) is added in the alkaline cleaning solution, the adsorption of SDS in/on the membrane can not only improve its hydrophilicity and negative charge, but also quickly eliminate the alkali-induced pore swelling effect and avoid the accumulation of foulants in the pores, thereby enhancing the antifouling performance of the NF membrane. Using the alkaline SDS cleaning, the irreversible fouling of the NF membrane maintains below 10% while its permeability recovery keeps above 100% in six continuous fouling/cleaning cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    3
    Citations
    NaN
    KQI
    []