Enhanced ligand-free attachment of osteoblast to poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanoparticles

2021 
Polymeric nanoparticles have previously been used as substrates for cell attachment and proliferation due to their ability to mimic the extracellular matrix, but in general, they require surface chemical modifications to achieve this purpose. In this study, polymeric nanoparticles were developed and used without any matrix ligands functionalized on their surface to promote cell attachment and proliferation of human osteoblasts (MG63s). First, telechelic, reduced molar mass and diol-functionalized poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was prepared by transesterification using ethylene glycol. Then, PHBV-diol was used to prepare biodegradable nanoparticles via the solvent evaporation technique. MG63s were cultured in the presence of PHBV nanoparticles and growth kinetics were compared to that on tissue culture polystyrene (TCPS). Cell attachment on non-tissue culture polystyrene pre-coated with nanoparticles was assessed and compared to attachment on TCPS. The cell attachment study demonstrated that cells readily attached and were well spread onto the nanoparticle surfaces compared to non-tissue culture polystyrene. These findings reveal the potential of PHBV nanoparticles for cell attachment and growth to be used in tissue engineering.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    0
    Citations
    NaN
    KQI
    []