Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: Effects of size on oxygen reduction reaction pathway

2019 
Abstract Reducing the Pt utilization has become a desirable task in the electrocatalytic oxygen reduction reaction process. Here, we report that Pt single-atoms are successfully anchored on reduced graphene oxide sheets via facile chemical reduction. The resulting catalysts exhibit enhanced mass activity by loading tiny amounts of Pt atoms (0.48 wt%) and maximizing their atom-utilization efficiency. It is noticeable that Pt single-atom catalysts show a completely different trend in conventional Pt nanoparticle catalysts, for which H 2 O 2 may propose as a main product due to the absence of adjacent sites for O–O breakage. A high mass activity is obtained with graphene-supported Pt single-atoms (3.10 A mg Pt −1 ), about 57 times that for commercial Pt/C at 0.8 V (vs. reversible hydrogen electrode). This value is also superior to state-of-the-art Pt-based catalysts for electrocatalytic oxygen reduction, indicating enhanced efficiency with high-dispersed Pt single-atoms and the stimulating metal-support interactions. The effects of particle size on the oxygen reduction process pathway are discussed through contrasting H 2 O 2 selectivity of graphene-supported different Pt species (nanoparticle, cluster, and single-atom). Obviously, graphene-supported Pt single-atoms with isolated Pt sites will follow the two-electron pathway to generate H 2 O 2 , while graphene-supported Pt nanoparticles prefer to favor a complete reduction to form H 2 O.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    15
    Citations
    NaN
    KQI
    []