Run scenarios for the Linear Collider

2002 
We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years of LC operation, one can do an excellent job of providing high precision measurements with which to probe the nature of the new physics, and which will give complementary and improved information over that obtained at the LHC.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []