Accuracy aware pixel selection in multi-wavelength uDBO metrology enables higher robustness and accuracy for DRAM

2021 
Advancing technology nodes in DRAM continues to drive the reduction of on-product overlay (OV) budget. This gives rise to the need for OV metrology with greater accuracy. However, the ever increasing process complexity brings additional challenges related to metrology target deformation, which could contribute to a metrology error. Typically, an accurate OV measurement involves several engineering cycles for target and recipe optimization. In particular, process optimization in either technology development (TD) phase or high volume manufacturing (HVM) phase might influence metrology performance, which requires re-optimization. Therefore, a comprehensive solution providing accuracy and process robustness hereby minimizing the cycle time is highly desirable. In this work, we report multi-wavelength µDBO enhanced with accuracy aware pixel selection as a solution for robust OV measurement against process changes as well as improved accuracy in HVM. Accuracy aware pixel selection is capable of tackling intra-target processing variations and is established on a multi-wavelength algorithm with immunity to target asymmetry impact. DRAM use cases in FEOL critical layers will be discussed in this paper. Superior robustness and accuracy will be demonstrated together with improved on-product OV performance, promising a process of record metrology solution in specific applications throughout the TD and HVM.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []