Investigation of the aerodynamic performance and flow physics on cross sections of Dragonfly wing on flapping and pitching motion in low Reynolds number

2019 
In this research, the flow physics and aerodynamic performance of dragonfly cross sections, used in Micro Aerial Vehicles (MAVs), in low Reynolds are investigated. The main objective of the research is to study the performance of dragonfly wing cross-sections flapping motion in Reynolds 5000 and 10,000. Pitching motion is one of the most important mechanisms in force lifting generation, and the effects of Reynolds number and mean angle of attack on aerodynamic coefficients have been extensively investigated for the pitching motion. In the present study, the geometry of two cross sections of dragonfly was extracted. Incompressible, two-dimensional and unsteady Navier–Stokes equations have been used to simulate the flow. k − ɛ RNG model was used for turbulence modeling. To simulate the wing pitching motion, the dynamic mesh method was used. The results showed that in flapping motion, pitching-up rotation has caused a rapid increase in lift coefficient. Furthermore, it was found that the absence of stall doe...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    8
    Citations
    NaN
    KQI
    []